Resilient Alaskan Distribution system
Improvements using Automation, Network analysis, Control, and Energy storage (RADIANCE)

Rob Hovsapian / Abraham Ellis
Idaho National Laboratory / Sandia National Laboratory
DOE Project Overview - December 13, 2017
Design of Networked Microgrids – Zonal Approach

Tightly-coupled Microgrids
[as the case of City of Cordova, Cordova Electric Coop]

- Data and energy/storage resource exchange between components of two or more closely located microgrids (within few miles)
- Connected physically using local tie-switch or transfer switches, that operators/automated algorithm can close or open to increase overall resilience

Loosely-coupled Microgrids
[geographically dispersed Alaskan villages]

- Data communication-based coordination
- Zero (minimal) physical power exchange over Medium Voltage network. Thus, microgrids be physically very far from each other (100x miles)
- Resilience Metrics shared between each individual microgrid such that overall distribution network resilience can be improved

Zonal architecture: Unfavorable events in one location can be secured by resources in another
Demonstration Site – City of Cordova, AK

Humpback Creek Hydroelectric Plant
1250 kW (2 x 500 kW + 1 x 250 kW)
17,000 foot UG and submarine transmission line

Power Creek Hydroelectric
6278 kW (2 x 3124 kW)
25 kV transmission ties to Eyak Substation, Inflatable dams

City of Cordova
1,566 customers, 18 MW
One Substation
78 mi UG distribution lines

Orca Power Plant
10.8 MW Diesel Control Center, CEC

Crater Lake Dam Storage
may offset 25% Diesel consumption
Thank You
Questions?